Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton.
نویسندگان
چکیده
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.
منابع مشابه
Osmotic stress-induced remodeling of the cortical cytoskeleton.
Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key c...
متن کاملInvasion of endothelial cells by Neisseria meningitidis requires cortactin recruitment by a phosphoinositide-3-kinase/Rac1 signalling pathway triggered by the lipo-oligosaccharide.
Type-IV-pilus-mediated adhesion of Neisseria meningitidis (also known as meningococcus) to human endothelial cells induces the formation of membrane protrusions leading to bacterial uptake. We have previously shown that these protrusions result from a Rho- and Cdc42-dependent cortical actin polymerization, and from the activation of the ErbB2 tyrosine-kinase receptor and the Src kinase, leading...
متن کاملCortactin Phosphorylated by ERK1/2 Localizes to Sites of Dynamic Actin Regulation and Is Required for Carcinoma Lamellipodia Persistence
BACKGROUND Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is ...
متن کاملCortactin Is a Substrate of Activated Cdc42-Associated Kinase 1 (ACK1) during Ligand-induced Epidermal Growth Factor Receptor Downregulation
BACKGROUND Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of t...
متن کاملAbl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function
Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl-mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2003